

The University of Jordan Accreditation & Quality Assurance Center

Course Syllabus

Course Name: Number Theory

Course Syllabus

1	Course title	Number Theory
2	Course number	(0301342)
3	Credit hours	3
5	Contact hours (theory, practical)	3
4	Prerequisites/corequisites	(0301211)
5	Program title	B.Sc.
6	Program code	
7	Awarding institution	The University of Jordan
8	School	Science
9	Department	Mathematics
10	Course level	Compulsory Specialization requirement
11	Year of study and semester (s)	3 rd 1 st and 2 nd or summer semester
12	Other department (s) involved in teaching the course	None
13	Main teaching language	English
14	Delivery method	☐ Face to face learning Blended ☐ Fully online
15	Online platforms(s)	■Moodle ■Microsoft Teams □Skype□Zoom □Others
16	Issuing/Revision Date	3-11-2022

17 Course Coordinator:

Name: Prof. Omar Abughneim	Contact hours: 10:30-11:30
Office number:329	Phone number:
Email:o.abughneim	

18 Other instructors:

ame:	1
ffice number:	
none number:	
mail:	
ontact hours:	
ame:	
ffice number:	
none number:	
nail:	
ontact hours:	

19 Course Description:

As stated in the approved study plan.

Division algorithm; divisibility; greatest common divisor and least common multiple; Diophentine equations; prime numbers and their distribution; fundamental theorem of arithmetic; congruence; linear congruence equations; Chinese remainder theorem; tests of divisibility. Fermat little theorem; Wilson's theorem; arithmetic functions; cryptography as an application of number theory.

20 Course aims and outcomes:

Aims:

Elementary Number Theory is concerned with exploring properties of integers. The course requires some knowledge in foundations of mathematics.

Many of the problems discussed can be adapted for use by elementary, middle, or secondary school teachers. In recent times, number-theoretical ideas have found important applications, perhaps most notably in the area of computer and network security, and we will mention some of these applications. The course will also emphasize reading and writing proofs; consequently, it will enrich the student's analytical and problem solving skills.

The major objectives of the course are the following:

- 1) The students prove theorems aboutintegers.
- 2) The students use the computer to formulate conjectures and develop proofs through their investigations of number theoretic properties
- 3) The students explore the historical development of integer properties and the contributions of famous mathematician to number theory.
- 4) The students in spire the students towards an involvement in the subject by considering some famous unsolved problems of number theory and by exploring the connections that number theory has with other branches of mathematics.

B- Students Learning Outcomes (SLOs):

Upon successful completion of this course, students will be able to:

	SLO							
SLOs	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
SLOs of the course								
1Investigate various							•	
number systems and								
divisibility tests.								
2 Use some factorization							•	
methods								
3 Demonstrate their							•	
knowledge of								
divisibility, prime								
numbers and the								
Euclidean Algorithm								
4 Solve linear							•	
Diophantine equations								
and congruences of								
various types, and use								
the theory of								
congruences in								
applications								
5 Use mathematical							•	
reasoning								

21 . Topic Outline and Schedule:

Topic	Week	Instruct	Achieved ILOs	Evaluation Methods
1. Some Preliminary Considerations	1-2		7	Exam
1.1 MathematicalInduction				
Pages 6-8: Problems 1-4,7-9,11,13,14				
1.2 The Binomial Theorem				
Pages 10-11: Problems1,3				
2. Divisibility Theory in theIntegers	3-5		7	Exam
2.1 The Division Algorithm				
Pages 19-20: All problems except 7				
2.2 The Greatest Common Divisor				
Pages 25-26: All problems except22				
2.3 The Euclidean Algorithm				
Pages 31-32: all problems except 11 and 12				
2.4 The Diophantine Equation $ax +by =c$				
Page 38: Problems 1-4,6,7.				
3. Primes and TheirDistribution	6-8		7	Exam
3.1 The Fundamental Theorem of Arithmetic				
Pages 44-45: All problems except14,18				
3.2 The Sieve of Eratosthenes				
Pages 50-51: Problems 1-4(a), 5, 9, 12.				
3.3 The GoldbachConjecture				
Pages 59-61: Problems 1, 2, 3, 6, 9, 10, 11, 12,18, 20, 21, 22, 24, 26				
4. The Theory of Congruencies	9-10		7	Exam
4.2 Basic Properties of Congruence) 10		,	Lam
Pages 68-69: All problems except15				
4.3 Special DivisibilityTests				
Page 73: Problems 1-4, 6-8, 13-15				
4.4 LinearCongruence				
Pages 82-83: Problems 1-6, 9-15,17,18,20				
5. Fermat'sTheorem	11-12		7	Quiz
5.2 Fermat's Factorization Method				
Pages 90-91: Problems 1, 3, 5,6				
5.3 The LittleTheorem				
Pages 96-97: Problems 1-11, 13, 14, 16,18, 21.				
5.4 Wilson's Theorem				
Page 101: Problems 1, 2, 4-12, 14, 15, 17, 18				
6. Number-TheoreticFunctions	13-14		7	Exam
6.1 The Functions $ au$ and σ				
Pages 109-111: Problems 1-9,13-15,17-21,23				
6.2 The Mobius Inversion Formula				
Pages 115-116: Problems1,3,4,6				

percental solution			
7. Euler's Generalization of Fermat's Theorem	15	7	Quiz
7.2 Euler's Phi Function Factorization Method			
Pages 133-134: Problems1-6,8-11,13,18-20			
7.3 Euler'sTheorem			
Pages 138-139 : Problems 1-5, 7-10,13			
7.4 Some Properties of the Phi-Function			
Pages 143-144: Problems 1-3,6-10,13-16			
7.5 An Application to Cryptography			

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
Quiz #1	15		7		On Campus
Quiz #2	15		7		On Campus
Midterm	30		7		On Campus
Final Exam	40		7		On Campus

23 Course Requirements

(e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

24 Course Policies:

- 1. The student is not allowed to take the course and its pre-requisite in the sametime.
- 2. Attendance is absolutely essential to succeed in this course. You are expected to attend every class; please notify your instructor if you know you are going to be absent. All exams must be taken at the scheduled time. Exceptions will be made only in extreme circumstances, by prior arrangement with theinstructor.
- 3. If a student is absent for more than 10% of lectures without an excuse of sickness or due to other insurmountable difficulty, then he/she shall be barred from the final examination also he/she will get a failing grade in thiscourse.
- 4. Medical certificates shall be given to the University Physician to be authorized by him. They should be presented to the Dean of the Faculty within two weeks of the student's ceasing to attendclasses.
- 5. Test papers shall be returned to students after correction. His/her mark is considered final after a lapse of one week following their return.
- 6. Solutions for the exams questions and marks will be announced at the webpage of the

instructor: http://eacademic.ju.edu.jo/eabuosba/default.aspx

7. Cheating is prohibited. The University of Jordan regulations on cheating will be applied to any student who cheats in exams or onhomeworks.

25	D	.c.		ces	_
<i>/</i> .¬	K f	17	ren	CPC	•

A-	Required	book(s),	assigned	reading	and	audio-visuals	:
----	----------	----------	----------	---------	-----	---------------	---

Elementary Number Theory; 7th Edition by David Burton

- B- Recommended books, materials, and media:
 - 1) An Introduction to The Theory of Numbers, 5thedition ,by I. Niven, H. Zuckerman and H.Montgomery.
 - 2) A Friendly Introduction to Number Theory, 2nd edition, by Joseph H.Silverman

26	6 Additional information:					

Name of Course Coordinator: Prof. Omar AbuGhneimSignature: Date:3-11-2022
Head of Curriculum Committee/Department: Prof. Ahmad Al Zghoul Signature:
Head of Department: -Prof. Manal Ghanem - Signature: -M. Ghanem
Head of Curriculum Committee/Faculty: Signature:
Dean: Mahmoud Jaghoub Signature: